Label-free biosensing with functionalized nanopipette probes.

نویسندگان

  • Senkei Umehara
  • Miloslav Karhanek
  • Ronald W Davis
  • Nader Pourmand
چکیده

Nanopipette technology can uniquely identify biomolecules such as proteins based on differences in size, shape, and electrical charge. These differences are determined by the detection of changes in ionic current as the proteins interact with the nanopipette tip coated with probe molecules. Here we show that electrostatic, biotin-streptavidin, and antibody-antigen interactions on the nanopipette tip surface affect ionic current flowing through a 50-nm pore. Highly charged polymers interacting with the glass surface modulated the rectification property of the nanopipette electrode. Affinity-based binding between the probes tethered to the surface and their target proteins caused a change in the ionic current due to a partial blockade or an altered surface charge. These findings suggest that nanopipettes functionalized with appropriate molecular recognition elements can be used as nanosensors in biomedical and biological research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalized nanopipettes: toward label-free, single cell biosensors

Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing ...

متن کامل

Functionalized Nanopipette: towards single cell immunoassay

Nanopipette technology has been proven to be a labelfree biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape and charge density. The electrical read-out and the low cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopi...

متن کامل

Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators

Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosens...

متن کامل

Whispering Gallery Mode Resonators for Rapid Label-Free Biosensing in Small Volume Droplets

Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances. WGM resonances are sensitive ...

متن کامل

Capillary Microfluidics-Assembled Virus-like Particle Bionanoreceptor Interfaces for Label-Free Biosensing.

A capillary microfluidics-integrated sensor system is developed for rapid assembly of bionanoreceptor interfaces on-chip and label-free biosensing. Genetically engineered Tobacco mosaic virus (TMV) virus-like particles (VLPs), displaying thousands copies of identical receptor peptides FLAG-tags, are utilized as nanoceptors for antibody sensing. Controlled and accelerated assembly of VLP recepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 12  شماره 

صفحات  -

تاریخ انتشار 2009